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Abstract

This report describes the development of a simulation describing noise in mode-
locked lasers, and some of the results of these simulations. The additive pulse mode-
locking (APM) master equation is described, and converted to a form compatible with
previous work. Quantum noise and noise caused by the laser pump are described
quantitatively, and means of producing simulated noise are developed. The resulfing
quantum noise is compared to theory. Measures of laser noise and means of estimating
the spectrum of a random signal are discussed. The measures of timing jitter and energy
fluctuations from the simulation are found to agree well with an existing analytic model.
Means for measuring random intensity noise (RIN) are developed. The spectrum of the
output of a mode-locked laser simulation is analyzed using these tools. RIN over narrow
frequency bands of the output is found to be well described by a randomly driven damped
harmonic oscillator model. The effect of changing laser parameters was examined to
identify strategies for developing low noise lasers. It was found that changes in the

mode-locking parameter, cavity gain and loss had the greatest effect.
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1 Introduction

This report documents an Entrepreneurial Research (ER) project on noise in mode-
locked lasers. The ability of photonic systems to achieve a variety of goals is limited by
noise. The most obvious example of this is in communications networks. If optical
pulses are used as bits in a communications network, the data rate of the system has to be
large compared to the timing uncertainty of the source laser. Frequency fluctuations in
the laser output will cause additional timing errors due to group velocity dispersion in

optical fiber.

The major achievement of the effort has been the development of a computer model
of laser noise. This was achieved by adding a random noise term to an existing laser
model. There has been recent interest in using modes of a mode-locked laser as a comb
of narrow bandwidth CW frequency sources. The results of the simulation have been

analyzed to determine the predicted noise in the laser output in certain frequency bands.

The starting point for the work was a paper by Haus and Mecozzi'. They added
random noise terms to a master equation describing pulse evolution in a mode-locked
laser. Analytical techniques were used to derive expressions that describe the statistics of
average pulse properties. These include fluctuations in pulse energy, mean wavelength,
phase and timing jitter. This work consisted of justifying their noise model and, where
necessary, extending it. Next, the art of running stochastic models on the computer had
to be mastered. Experimentally measurable values had to be backed out of the simulation

results.



2 Theoretical Model
2.1 Stochastic Master Equation

Haus and Mecozzi' addressed the problem of noise in mode-locked lasers by
modifying the Additive Pulse Modulation (APM) master equation. APM theory has been
applied to many laser systems, and has been described in detail***. I have used this
model to describe a Cr*':YAG laser’. The master equation is similar to the Nonlinear
Schrodinger Equation (NLSE) which I have simulated extensively to model pulse

evolution in fiber lasers and fiber amplifiers®®. The stochastic master equation is

Ty % a(T,t)=

4

2 2
[— 0+ g[l + éz—gf] + iD%Z- +(y, —i8Ya(T, t)’ —v5fa(T, ¢}’ fa(T,t)+ T, S(t, T)

Equation 2-1
The electric field envelope is represented by a(T,t), where t represents short-term time,
and T is time on the order of the round trip time, Tr. The loss per round trip is given
by £, and the gain per round trip by g. The bandwidth of the amplifier is €, and D is the
group velocity dispersion per round trip. The parameter y3 represents the mode-locking
action, and s the saturation of this action, while & gives the optical Kerr effect. Finally,

S(T,t) is the noise source. The Kerr coefficient, 8, can be found by the equation

2n Ly

8=7Aeﬁ

n,.

Equation 2-2
where L is the length of the Kerr medium, and A is the effective area of the beam in
the medium. The wavelength of the laser light is A. The parameter n; is the Kerr index.

The effective index of the material is given by n = n, +n,I, where I is the intensity, and

n is the linear portion of the index of refraction. The dispersion D is related to




s 1 . .
experimental quantities by D = —2—k”L 4> Where k" is the second order propagation

coefficient and Ly is the length of the dispersive medium. Gain can be modified by gain
go
1 2
+—— |dt{a(T,t

saturation. This effect is given by g(T) = where P is the saturation

power and gy is the small signal gain.

Equation 2-1 can be modified into a normalized form similar to that used in

soliton simulations®. This was done by taking Equation 2-1 and dividing by ,‘; The
0
group velocity dispersion is given by B, and T represents the pulse width. It will be

more specifically defined in Equation 2-7. This yields -

T2 8
TR B—o-a—l:a(T, t) =

2

T? 1 & 0
E[—Z+g(l+gz P )+ D¥+ ~i8)a(T, t)’ ~y (T, )’ :,a(T t)+B—T S(t,T)

Equation 2-3

. _t _ B, .
If one substitutes 1 = T, and £ = T, one derives
726 0)=
~f+gl1 +—1——‘22— +i—ai+T—°2{(y3 —i6]a(§,1:]2 —ysla(i,'cr} a(&,t)+I‘iT S(&,1).
not) 200 B, B, "

Equation 2-4



where T, = . The parameters £ and g are now in terms of dispersion lengths

Q,T,

. : o : T _

instead of round trips. A dispersion length is defined by L, = B— The equation is
2

172

further normalized by defining u(€,7) = Py “a(&,7). The resulting equation is

a —
% ut,t)=

‘ 2 s oA2 T2 . 3 4 2
[—€+g(l+—:—2 ;)% ;2+P°2° 0, -0t o -, RJule ) }]u(a,r)+ T, 5(e )

: B,\Py

Equation 2-5

2

P, T, o
This equation becomes similar to the NLSE if we choose Py such that —=-2— = 1, and
2
2
fﬁ’M}-=F. This results in
2
0
—ulg,1)=
)
1 8 i 0 . 2 PITly 4
—A+gl 1+ |+ =—+ (T -ijulE, ) +222|ul, 1) [u,
o1 3 e T e R )
2
+-T—°-TRS(§,1)
B,

Equation 2-6

This equation is similar to the NLSE, so soliton like trial solutions of the form

a(T,t) = /P, sec h(Tio)

Equation 2-7

will be used.




2.2 Noise Terms

2.2.1 Quantum Noise
The power contributed by spontaneous emission into a mode is given by'°

dP,

spont _ Nz
dz N,-N, g(v)ivB

Equation 2-8

where N, N; are the populations of the upper and lower levels of the state being excited.
The bandwidth over which the noise is measured is B, and v is optical frequency.
Plank’s constant is given by h. We will take the bandwidth as being Ao/ and the line-
shape function, g(v) as being lorenzian'"'2. This spectrum is generated by the stochastic

Ornstein-Uhlenbeck process'>, which is generated by the Langevin equation’*

E[c'ii—t@ +xE, (1) = JDF(t)

Equation 2-9

where F(t) is a gaussisan random variable with a mean of zero and unit standard
deviation. The real and imaginary components of the noise electric field are given by Ej;.

This process has a correlation function

(BB, ()= e,

Equation 2-10

and a lorenzian spectrum

1 1
nT, (m—coo)2 +T;

Flw) =

Equation 2-11



Values of D and k, will be derived below. The line width is defined by the parameter T,
where x =1/T,. In order to have the same mean noise power as given in Equation 2-8 we

need to have

(ELi(0,E,(0) =2 = hvgtBdz

Equation 2-12

where 6 = No/(N2-N;). Hence, using the bandwidth given above, -

ghvb Ao dz
D e .
nT,

Equation 2-13

2
Since'® Ao = T Equation 2-13 reduces to
2

_ 2ghv0dz

D
T}

Equation 2-14

Equation 2-10 and the coefficients derived here can be used to compute random function
with the correct statistics to represent spontaneous emission noise. The real and

imaginary parts of x(T,t) are taken to be uncorrelated to each other.

Statistical measures of the resulting noise are shown in the following figures.
Figure 2-1 shows a comparison of the expected to the measured spectrum. The measured
spectrum here results from simply performing a discreet Fourier transform (DFT) routine
on the data. More sophisticated methods will be described in section 4. The results show
approximate agreement, though there is some problem at high frequencies. Figure 2-2
and Figure 2-3 show first and second order coherence respectively. Figure 2-2 has the
correct exponential form. The abnormal shape at high frequencies appears to be
eliminated by averaging over a greater number of points. Likewise the second order

coherence appears to have the proper shape.
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Figure2-1  Comparison of the predicted to observed spectrum of the noise

generation subroutine.
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Figure 2-2  First order coherence of noise from the noise generation algorithm.

The exponential curve is almost covered by the 65536 curve.
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Figure 2-3  Second order coherence of the noise produced by the noise generation

algorithm.

2.2.2 Pump Noise

As stated before, gain can be given as'

g,(v)
1 2
T [dtlacT, )

g(T,v) =

1+
P,

Equation 2-15

The small signal gain can be expressed as go(v)=c(v)Ny, where & is the emission cross

section of the lasing transition, and Ny is the unsaturated population inversion. For a four



level atom under conditions of weak pumping this inversion is given by N, =t N, W
where ts, is the spontaneous emission lifetime, N, is the lasing atom density and W is the
probability density for the absorption of pump light. This is in turn given by W = o6,
where o, is the absorption cross section of the pump light and ¢;, is the pump photon

flux. Consequently the small signal gain can be expressed as
g,(v)=o(v)t,N,0,0,.

Equation 2-16

The mean pump intensity over a period of time, dt, is given by T = $p dt. For a thermal

source the pump photon number has a Poison distribution, so it has a variance 2

(Am)2 =Tm.

Equation 2-17

This effect can be included in the numerical simulation by computing the mean pump
flux, using a Poisson random number generator to compute the flux for each time step,

and then Equation 2-16 to compute the small signal gain for the step.

2.3 Simulation Methods
Equation 2-7 was numerically integrated using the Split Step Fourier Transform

method. This method has been extensively discussed elsewhere %1617t can be considered
to be an example of a spectral algorithm for solving a partial differential equationls.
Spontaneous emission noise was added using Equation 2-9 and varying the gain

according to Equation 2-16 and Equation 2-17.

2.4 Noise Background
This section will define Relative Intensity Noise (RIN). Noise in single mode lasers has

been extensively studied'®1??%?! Noise can cause fluctuations in both the intensity and
phase of a single mode laser. Relative intensity noise (RIN) is the principle focus of the

work described here. RIN is defined as

10




Equation 2-18

where the spectral density is defined as

S, (0) = fw <8P(t + 1) 8P(t) exp(~ i) d‘c)
Equation 2-19

where 8P(t) = P(t)-P. The power of the laser is given by P(t), and the mean power by P.

This can be used to obtain the mean squared deviation

(lBp()F) = [8, (6t

Equation 2-20

3 RIN caused by spontaneous emission

This section discusses intensity fluctuations caused by spontaneous emission. The
noise was added to the model as described in Section 2.2.1. The results of the model can
be analyzed in a number of ways. Predictions of average pulse phenomena can be

produced. These are useful as they can be compared to an analytic theory.

3.1 Haus-Mecozzi predictions
Haus and Mecozzi predicted that timing jitter would vary as?

4D? T -T
<|At(T - To) - At(To )|2> = TE_DM“':;[; -1+ CXP(':_] }

P
Equation 3-1

The diffusion coefficient due to quantum noise, Dy ¢ is given by

11



Equation 3-2

and the relaxation time 1, by

W,

e T 4gT?

Equation 3-3

where w is the pulse energy. For a hyperbolic secant pulse, the energy is wo =2 Po To.
The data for this calculation are summarized in Table 1. The saturated gain, g, when
computed, is 0.138. Hence the relaxation time is 1, = 2.037 x 10°® sec, where Ty should
be replaced with Tp Equation 3-3. The quantum noise diffusion coefficient is Dy gn.

These data were used because they describe a laser which I had simulated in great detail

in the past’.

D (fs*/round trip) 2675

Tr (sec) 6.67 x 10”
wp Joules 6.93x10°%
To (sec) 72.86 x 1077
go (1/dispersion lengths) 0.059

Tp (sec/dispersion lengths) 8.33x10°
hv (joules) : 1.28x 10"
T2 (sec) 34.4x 107"

Table 1 Typical laser physical parameter values.

Equation 2-6 was numerically integrated as described in Section 2.3. The results

are shown in Figure 3-1. The “theory” curve plots the results of Equation 3-4.

12




2
4D? Z -7
= D 1 -1 .
> Tﬁ P,Qntp[tpTD + exp(TpTD]jl

Equation 3-4

In this equation certain units have been changed. Notably the separation is given in units
of dispersion lengths, and the magnitude of the timing jitter is in units of To®>. The curves
for series 1, 2, and 3 represent 3 different sets of parameters for the degree of numerical
detail in the calculation. The agreement for between the simulations and the theory is
within 10%. The step size in the calculation was 0.001 dispersion lengths. The pulse
was propagated for 400,000 steps. To generate an accurate estimate of pulse jitter one
had to average over all 400,000 steps. Curves based on averaging over only 400 steps
had the correct slope, on the log-log plot, but their y intercepts disagreed between each
other by an order of magnitude. The excellent agreement between theory and simulation

in this case gives confidence that the simulation is working well.

Similar analysis can be done with energy fluctuations. The correlation function of

these is described by

(W(T +T,)w(T, )> = %V D, ., exp( '; ITI)

Equation 3-5

where the relaxation time is given by

1 2g,-7,A2 +7,A})
T, T,
Equation 3-6

and g; by

2goToA(2)

PT, (1+—2T°Ag)2- '
s*R PsTR

g =

Equation 3-7

13



The diffusion coefficient of interest is

2g
Dw,qn = 4W0 -’f—hV .

R
Equation 3-8

The spectrum of the energy fluctuations is given by

s (@ 2>
)220
Q +?—
Equation 3-9

where

(5.@)) =Dy g

Equation 3-10

These predictions are compared to the simulation in Figure 3-2. The predictions here are
not as accurate as in the last case, however, there is rough agreement. A possible

explanation for the details in the simulation will be discussed in the next section.

14
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Figure3-1  Comparison of theory to a simulation of the timing jitter. The

different series had different numerical step sizes, showing that the results were not

highly sensitive to numerical parameters.
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Figure 3-2  Comparison of theory and simulation of energy fluctuations. The

different series resulted from simulations with different step sizes, or window sizes.

4 Spectral Estimation

The simulations developed for this project resulted in long sets of random data. To
measure RIN it was necessary to estimate the underlying spectrum of the noise. Spectral
estimation is discussed in a number of standard textbooks?>?*. The algorithms here were
adopted from Press et al.?®. These techniques are necessary due to the finite length of the
data series, and the fact that the data is only sampled at discrete points in time. For these

reasons one cannot simply Fourier transform the data.

16




The windowing technique uses weighting functions in conjunction with the discrete
Fourier transform. The data set is divided up into a large numbers of windows, and the
results of the windows are averaged. Using a long window allows for picking up very
narrow data features. However it also means that one can only average over a smaller
number of windows. This results in greater uncertainty in the precision of each point. In
contrast the Maximum Entropy method works by fitting a certain number of poles to the
Z-transform of the data. This method tends to work well for strongly peaked data.
Fitting to a larger number of poles will find more real poles, but can also result in

spurious results.

Figure 4-1, and Figure 4-2 show the result of applying these techniques to synthetic
data generated by means described above. The theoretical frequency spectrum of the
noise is also shown. In Figure 4-1 we see that both of the techniques seem to correctly
estimate the shape of the curve. The windowing technique has a spurious peak at low
frequencies. Both techniques seem to show elevated noise at high frequencies. This
could be evidence of a problem in the noise generation method, though the problem
occurs when the noise is three orders of magnitude down from the peak. Figure 4-2
shows the results of fitting to more poles. The basic result appears to be to pick up more
noise. The 20 pole results appear to give reasonable results, so this was adopted for data

analysis.

17
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Figure 4-1  Comparison of the results of using the all-poles and the windowing

spectral estimation methods.
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5 Simulation Results

5.1 Simulation Technique and RIN Spectrum and Noise Model

5.1.1 Simulation Technique
The pulse information is stored in the form of function u(¢,t). A time window

much wider than the width of the pulse was used. For this reason it was reasonable to
convert this function to the frequency domain by using the FFT algorithm. This left a
function of the form ug&,v), where v represents the frequency components of the pulse.

This was converted to the normalized form

Y (@, Vi ) - <uf (&a \¢ ))g
F(g, v ) - <uf (ﬁ, A ))g .

Equation 5-1

The frequency spectrum of F{Q,v;) was determined using the spectral estimation
techniques described in section 4. The slowly varying frequency components are given
by Q. The FFT results in estimates of the RIN over a number of frequency ranges, or

Bins. These are distinguished by the index in the variable v;.

Pulse energy in all cases was maintained at about 1.05 in normalized units. This
strategy simplified drawing comparisons between results produced by different laser
operating parameters. For a given set of parameters the gain was adjusted to achieve this
energy. I started the simulation with a trial pulse and let the pulse shape settle down to its
final form. In practice there were many problems that needed to be overcome. If the
gain became too large the pulse would be unstable and collapse. Ultimately the
simulation would start from noise, but it would form two smaller pulses, rather than one
big one. When I discussed this with a colleague to compare this with experimental
observations, I found out that if the gain in the laser described by the simulations was
increased too much, it would produce multiple pulses in the cavity?®. Apparently this

instability is an actual feature of the system, and not simply a numerical artifact.

20




A second problem was determining when the simulation had settled down to
equilibrium. This was done by plotting the function F(€,v;) for the DC frequency bin.
An example of this is shown in Figure 8. The function is a damped sine wave for the first
part of the simulation, until it becomes dominated by noise. At this point the function
appears to be a sine wave with a random modulation as shown in Figure 5-2. The period
of the oscillations is approximately 33 dispersion lengths. If the oscillation of the pulse is

linked to soliton shaping mechanisms, one would expect the period to be similar to this.

poive standard devimtion
0.
Q.

0%"" (w.u.)
-0.3

«0. 4

Figure S-1  The simulation settles down from starting conditions into a randomly
modulated sine wave.

poise stendwnrd devimtion

~0.00498
05““. (w.u.)
-0.00502
-0.00804

-0Q.00506:
-0.00508;

Figure 5-2 A detailed view of normalized energy fluctuations of the central

frequency bin.
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Figure 5-3  Shows the variation in RIN for increasing bin frequency.
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Figure 5-4  Shows the variation in RIN with Bin frequency. This figure

concentrates on the low frequencies, where RIN changes rapidly.

An example of the resulting frequency spectra can be seen Figure 5-3. In general
higher frequencies show greater RIN. Since the intensity of the pulse falls off with
frequency, this could be explained by a constant fluctuation magnitude being divided by a
smaller intensity in Equation 5-1. The curve shows a dramatic peak at low frequencies,

as shown in Figure 5-4.

5.1.2 Noise Model
One would like to gain physical insight into the nature of the noise. In Figure 5-5

one sees the shape of the central frequency RIN curve. Equation 3-9 shows the expected

fluctuation spectrum of the pulse energy, which is a reasonable guess for the spectrum of
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the noise in each frequency bin. This noise has a lorenzian curve. The relaxation time
was computed by using Equation 3-6. The amplitude was determined by using Equation
3-9. This approach doesn’t predict the low frequency spike. The other model is
described as bound motion in Reference 23. This model results from a stochastic
differential equation similar to that which gives the lorenzian spectrum, except that it
incorporates a restoring force. In practice, there are two restoring forces in the computer
model, which don’t appear in the analytic theory. The simulation includes the ys term,
which tends to control the pulse energy. Additionally, in the analytic theory the saturated
gain is treated as a static quantity, while in the simulation, it is continuously recomputed.
As in a CW laser, this also tends to clamp the energy to an equilibrium value. The

lorenzian spectrum results from a stochastic differential equation

dx f 1
—+—x =—F(t).
dt-'-mx m ()

Equation 5-2

In contrast bound motion has the form

2
g——2§+i§§—+£=lF(t),
d° mdt m m

Equation 5-3

The coefficient f represents a dissipative force, and c is the restoring force. The forcing

function is assumed to be white noise of the form Sg(@) = 2kTf. The resulting spectrum

is

0N d

c——mmz)2 +f20?
Equation 5-4

The autocorrelation function
R, (x)= KT ol [cos([.’rr) + % sin(Blr[):I
c

Equation 5-5
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where a=f/2m, and o’+B*=c/m.

Equation 5-3 can be justified on a somewhat more rigorous basis. Equation 3-9 is

derived from a differential equation’

0 1
Tx ?ﬁAw =-—AwW+TS, (w).

Equation 5-6

If one assumes that there is some additional effect, such as pulse reshaping, which is not a
function of the current state of the system alone, then one would need to add an

additional term to Equation 5-6, and it will become

. t
Ty 2 Aw = L AW+ TS, (w)+ IAW h(t)dt,
oT T o

Equation S-7

where h(t) is the memory function. If one takes the derivative of Equation 5-7, one
obtains
0? 1 0 S
TR WAW = T—gf Aw + TR w(W)"l‘ const.,

Equation 5-8

which is an equation of the form of Equation 5-3. This result suggests that one could
estimate the damping function form T, and estimate the constant term from the period of

the oscillation.

25



m———imulation results bound motion

02 0.4 06 08 1 12

\

normalized frequency

Figure 5-5  Compares central mode RIN to various models.

The form of the autocorrelation function is at least suggestive of Figure 5-1 which
shows how the simulation settles down from starting conditions. This model will be
examined further in a later section. By comparing Equation 5-8 and Equation 5-5 the
value of a could be equated to 1/t,. The period was estimated from Figure 5-2, and this
was used to estimate B. The noise magnitude, 2kT, was estimated by Equation 3-8. The
resulting curve approximates the simulated data. When the results from the lorenzian
curve, and the bound motion curve are combined, they resemble the simulated results
over a wide range. The integrated area under thé combined curve and the lorenzian differ
by less than 10%. It appears that the bound motion model is a reasonable estimate of the

central noise spike. It does not predict the high frequency results, which are better
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predicted by the lorenzian model. The high frequency noise only accounts for a small

percentage of the total, so this is not a grave problem.

5.2 Effect of Changing Laser Parameters
One would like to gain further knowledge of the nature of the memory function

introduced in the last section. In addition, one main intent of this project was to explore
the sensitivity of laser noise to experimentally controllable laser design parameters. In
practice this proved to be quite difficult. It was found that when ys was set to zero, or
when the laser loss was set to too low a value, the simulation was not stable. When

ys was eliminated, for instance, the noise of the central frequency bin was an exponential

growing sine wave, rather than the exponentially damped one, as shown in

. Similar results appeared when the loss was reduced. The noise total fluctuation

magnitude could be nearly as large as the mean magnitude.

In practice it was found that one could vary the mode-locking coefficient, and the
amplifier bandwidth. The effect of changing these over a wide range was explored. To
simplify the results, the RIN was summarized as the area under the RIN curve. We know

from Equation 2-20 that this is equal to the variance, or the autocorrelation function with
no time delay. From Equation 5-5 we see that this is equal to l—(I The parameter kT
c

could be adjusted. This corresponds to Dy, ¢ It can be reduced by lowering the pulse
energy, gain, or photon energy. Often these are not open to adjustment. These results
run contrary to the observation from the simulations that decreasing loss, and hence gain,
tended to increase the size of the fluctuations. It appears that loss must effect the

parameter ¢ in some powerful way.

The parameter c is not well understood. As mentioned above the value used in
calculations was obtained from the period of the oscillations of RIN. What effects
control the period of these oscillations? It was observed above that the period is on the
order of that expected for soliton shaping mechanisms. Soliton effects tend to take place
over length scales of a dispersion length. A pulse will tend to evolve into a soliton over
tens of dispersion lengths. For this reason the 33 dispersion length figure derived above

is plausible. The parameters that effect this are linear dispersion, material nonlinearly,
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and pulse energy. Hence, achieving low fluctuations requires low pulse energies, low
dispersion, and low nonlinearities. This leads to little pulse shaping and hence broad
pulses. Since such parameters as the pulse energy, cavity dispersion, and nonlinearity
are often hard to control, or are set by application requirements, it may be hard to control

the parameter c by altering them.

Some conclusions about the nature of the memory function, and the resulting
fluctuation magnitude can be derived from the simulation results and knowledge of APM
laser functions. Loss, and the mode-locking effect work together to form the pulse in
these lasers. Less intense parts of the pulse receive less gain from the mode-locking
element. These parts of the pulse will see a net loss as they go through the laser cavity.
A laser with high loss and a powerful mode-locking device will have a more powerful
mode-locking effect, and the pulse will moré rapidly evolve into its final state. This
qualitatively explains the observation that these are related to a higher oscillation
frequency. In particular, it may be that small changes in cavity loss have a large impact
on the period of the energy oscillations. This could explain the unexpected impact of
eliminating loss noted above. In APM lasers the nérmal understanding is that pulse
width is set by soliton shaping, and pulse energy is set by the mode-locking parameters.
The pulse width determines the degree of gain dispersion, and may be the physical cause
of the memory integral in Equation 5-7. However, this is not born out by Figure 5-6,
which shows the effect of changing the amplifier bandwidth. It would appear that the
total area under the RIN curve is at most only weakly related to the degree of gain
dispersion. In contrast, as seen in Figure 5-7 it is strongly related to the mode-locking
parameter. Since the total gain in the mode-locking element is proportional to the
integral of the pulse energy, the pulse reshaping could enter into the calculations through
this element as well. Hence, mode-locking appears to be the most powerful parameter for

controlling noise. The saturation term, vs, in particular appears to profoundly control the

noise magnitude.
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Figure 5-6  Shows variation in energy standard deviation with bin frequency for

various amplifier bandwidths.
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Figure 5-7  Shows variation in energy standard deviation with bin frequency for

various mode-locking parameter values.

6 Conclusions

A detailed numerical model of mode-locked laser noise has been developed, and it
has been used to derive noise spectra of RIN. It is found that there are new dynamics in
this noise, which can be described using a damped harmonic oscillator model. The new
effect does not appear to be brought about by gain dispersion, but rather i)y cavity loss
and the presence of saturation in the mode-locking device. The saturation of the mode-
locking action, represented by the parameter ys, appears to have the most effect. This
suggests that control of ys needs to be achieved to design low noise lasers. It also appears

that there may be an optimum cavity loss for low noise operation.
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